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On the existence of slow manifolds for problems
with different timescales

By Heinz-Orro KrEIss! AND JENS LORENZ?

t Department of Mathematics, UCLA, Los Angeles, CA 90024, U.S.A
2 Department of Mathematics and Statistics, The University of New Mexico,
Albuquerque, NM 87131, U.S. 4.

We consider time dependent systems of partial differential equations (PDE) whose
. solutions can vary on two different timescales. An example is given by the Navier-
Stokes equations for slightly compressible flows. By proper initialization, the fast
timescale can be suppressed to any given order; however, this does generally not
imply the existence of a slow manifold. Since the PDE solutions are uniformly smooth
in space, one can approximate the PDE system by a finite dimensional Galerkin
system. Under suitable assumptions, this finite dimensional dynamical system will
have a slow manifold.

1. Introduction

In applications, the initial value problem for systems of partial differential equations
which allow solutions on different timescales typically has the form

ou ) 0 0 0
— =¢1P)|=— P lu,— P, — F =0, 1.
o € O(ax)“+ l(u,ax)u-i—v Z(E)x)u+ (,t), t=0 (1.1)
w(z,0) = flx), = (x,...,%)€R°.
Here w = (u,...,u™)" is a real vector function with » components. The operators P
and P, are first-order differential operators of the form
P _a_ =§A,_a__ A, = A*e Rrxn
Now) 57 0, 7T ’
P lu 0) ZSIB(u)—a— B, = B¥e ™"
\ox) S oy T ’

i.e. the coefficients are real n x n hermitean matrices. The A; are constant matrices
and the B, are polynomials in the components of u. The operator P,(0/0x) is a second-
order differential operator with constant real coefficients. In applications, vP,
represents the dissipation present in the system. The parameters ¢ > 0 and v > 0 are
small constants which measure the difference in timescales and the level of
dissipation, respectively. (The coefficients of Py, P,, P, have been normalized to be of
order O(1).)

We are interested in solutions which are 2n-periodic in all space variables x;. We
assume that the initial data f and the forcing function F are C*-smooth and 27-
periodic in all space variables z;. For later purposes, we also assume that F is defined
fort > —1.
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160 H.-O. Kreiss and J. Lorenz

An example of a problem with different timescales is given by low-Mach-number
flow. In two space dimensions, it is described by the Navier—Stokes equations, which
in slightly simplified form are given by

w, v, +ou, +p, = vAu, Au=u,, +u,,,
v+ uv, +ovv, +p, = vAv, (1.2)
ez(pt + upx + vpy) + (ux +vy) = O

Here « and » denote the velocity components in the x and y-directions, respectively,
and p represents the pressure. The problem (1.2) has the form (1.1) if we symmetrize
the system by introducing ep = P as new variable. A discussion of the system from
the point of view of different timescales has recently been presented by Kreiss et al.
(1991). See also Klainerman & Majda (1982).

In many applications, one is not interested in the part of the solution which varies
on the fast timescale. Therefore, one wants to determine initial data for which
the fast timescale is not activated. In §2 we will consider systems with constant
coefficients and show how we can achieve this goal under suitable assumptions. In §3
we will generalize the results to nonlinear equations. Finally, in §4 we will
approximate (1.1) by a system of ordinary differential equations and give conditions
for the existence of a slow manifold of the approximating system.

We remark that the construction of a slow manifold for a highly oscillatory
problem with different timescales is usually more delicate than the construction of a
so-called inertial manifold or approximate inertial manifold for a dissipative
problem. Inertial manifolds are exponentially attracting; if initial data are chosen off
the manifold, then the trajectory shows transient behaviour, converging to the
inertial manifold at an exponential rate. For highly oscillatory problems, initial data
off the slow manifold lead to highly oscillatory behaviour, which may or may not die
out. In this case, the interaction of the slow and the fast scale is of interest ; see Kreiss
& Lorenz (1994) for an estimate of the interaction.

2. Systems with constant coefficients

In this section we assume that the coefficients B; of the operator P, are constant
matrices. In this case, we can use Fourier expansion to transform the system (1.1)

and oD 00) = 0l Pw) 0,0+ P(0,0, i0,0) = flw). 2.1)
Here w = (v, ..., w,) € Z° denotes the (real) dual variable to the space variable xe R*
and Pw) = eP,(iw’) + P, (i) + » || P, (i), (2.2)

where o' = w/|w|, |0|* = Zoj. (For simplicity of presentation, we will always assume
that f=F =0 for v =0.)

A suitable assumption for the dissipative term P, is the following eigenvalue
condition.

Assumption 2.1. The eigenvalues of P,(iw’) are non-positive.

This assumption ensures that the initial value problem is well posed. In our

example (1.2) we have
—|w’|? 0 0
Py(iw') = 0 —|w’> 0].

0 0 0
Phil. Trans. R. Soc. Lond. A (1994)
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Thus the above eigenvalue condition is satisfied. The next assumption concerns the
large part ¢! P, in our system.

Assumption 2.2. For each o', the eigenvalues k = k(w”) of Py(iw”) split into two groups
M, , =M, ,(0) in the followmg way:
If keM,, then |k| = 1. If keM,, then x = 0.

For our (symmetrized) example (1.2) we obtain
0 0 iw]
Piw)y=—1 0 0 iw, |, (2.3)
iw] iw, 0 '
ie. Ky o ==ilo], k3=0.

Thus M, consists of two and M, of one eigenvalue.
In the general case, Assumption 2.2 ensures existence of a unitary transformation
Uy(w’) such that

3o P Uyo) = (P40 ). 24)
where the eigenvalues of Ry(w’) are exactly the values in M,. Therefore,
Ry ()] < 1. (2.5)

Now consider the matrix P(w) given in (2.2). If ev|w| < 1 we can determine a
transformation
S = Uy() I+ eUy (")) (I +rve|o] T(o, o)),

which transforms P(w) to blockdiagonal form, i.e.

€'Ry+ R, +v|w @y, 0 )

S7P(w) S = ( :
() 0 Ryt vw| @y

(2.6)

(Note that 0 < ¢ <€ 1 is always assumed.) Thus, for ev|w| <€ 1, we can introduce new
variables d(w,t) into (2.1) by
Ww, t) = Sb(w, t)
and obtain
= 0] (6 Ry + Ryy +10] Q) 81+ (STF)Y,

B = |w| (Ryy + v 0] Q) ™+ (STLF), (2.7)
lf.

In this case, 4" is highly oseillatory whereas ¢'! varies slowly. We can decompose the
whole solution u correspondingly if we make:

Assumption 2.3. The initeal data f and the forcing function F satisfy
f(a)) =F(w,t)=0 for |w|>0d(ve), 0<d=-const. < 1. (2.8)
Under these assumptions the solution can be decomposed as
u=u'+u'l (2.9)
where u! varies on the ‘fast’ and »!! on the ‘slow’ scale.

Phil. Trans. R. Soc. Lond. A (1994)
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162 H.-O. Kreiss and J. Lorenz

The assumption (2.8) is not a strong restriction in applications. For example, in
low-Mach-number flows one has

ld(w, )] =~ e 7Vl y > 0.

Therefore, if |w| = d(ve)~!, then 4i(w,¢) is exponentially small for 0 < yd/e\/v < 1.

3. Nonlinear systems

In this section we consider the nonlinear system (1.1). We could use the theory of
pseudo-differential operators to block diagonalize the operator. However, we will
proceed in a more elementary manner. As a first step, we estimate all space
derivatives of the solution « independently of ¢7*.

Theorem 3.1. Consider the system (1.1) under the Assumption 2.1. There is a time
mterval 0 <t < T, T'> 0, and a constant K, both independent of € but depending on
[u(-,0), and maxy . | F(,E)|,, such that

(- D)ll, < K(llu(-,0)ll,+ max [|[F(-,§)l,), »=[zs]+2, (3.1)

0<E<t

for 0 <t <T. Here

; . . 0
lu(- Ol = Z 1D ... Deu(, 0% 1jl=2ji Di=5—

b
ll<p 0x;

and | - || denotes the Ly-norm,
21 2n N
||v||2=J TS P ds, . ds,
0 0 I=1

We shall only sketch the proof. For more details, see Browning & Kreiss (1982) and
Kreiss & Lorenz (1989).

Proof. We first consider (1.1) without the ¢ 2P, u-term, i.e. we consider the system
w, = (P +vP)w+F. (3.2)
Applying D7 = Dijr ... Dis to (3.2) we obtain

I = (D, Dy

= 2(Diw, D'P, w) + 2v(D'w, P,, D'w) + 2(Dw, D'F). (3.3)

By Assumption 2.1 we have ) )
D'w, Py,D'w) < 0.

Since (D'w, P, D'w) = 0, integration by parts and Sobolev inequalities give us
Sl 01 < H(lot- 0]1) + 19, 1)1
dt »

where H(p) is a polynomial in p. Therefore, the estimate (3.1) follows for the system
(3.2).
Now consider the system (1.1) including the large term ¢ *Pyu. For (d/d¢) || Du|?
we obtain again the relation (3.3) because
(D', PyD'u) = 0.
Phil. Trans. R. Soc. Lond. A (1994)
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On the existence of slow manifolds 163

Therefore, the same estimates hold, and the theorem follows.

Theorem 3.1 implies that the solution of (1.1) is smooth in space, with bounds for
the space derivatives independent of €. Therefore, we can expand the solution of (1.1)
into a Fourier series

w(x, t) = i(w,t) e ™,

weZ®

and the series converges rapidly. (More precisely, truncation errors can be bounded
independently of €.) In general, this is true only in the time interval 0 <¢ < 7T
specified in the theorem. However, in applications the dissipation operator often
ensures existence and smoothness of the solution for all time. Then the convergence
rate of the Fourier series will depend on v.

If one is not interested in the fast scale of the problem, one initializes the data using
the

Bounded derivative principle. Choose the initial data such that p>=1 time
derwatives are bounded independently of € at t = 0.

This is justified since one can show that if p time derivatives are bounded
independently of € at ¢ = 0, then the same is true at later times. To make the results
more precise, we define

Definition 3.2. Let T > 0 and let w(x,t,€) denote a vector function defined for x € R?,
0<t<T, 0<e< ¢, Weassume that w is 2n-periodic in each x;. We say that w is slow
to order p in 0 <t < T if all space derivatives D¥w have p continuous time derivatives
m0<t< T and
o D¥w

T < 00 (3.4)

sup max
0<e<e0<t<T

(’,t,E)

forj=1,2,...,p and all space derivatives D*w.
We say that w is slow to any order tn 0 <t < T if w is slow to order p in 0 <t < T
Jor any p. Correspondingly, if T = oo, then condition (3.4) becomes

I D*w

ot

sup  sup < 0. (3.5)

0<e<eg0<t<o

(- t.€)

We can prove

Theorem 3.2. If the initial data of (1.1) are chosen such that p time derivatives are
bounded independently of € at t = 0, then the solution is slow to order p in some time
interval 0 <t < T. Here T does not depend on e.

Proof. As before, we can use integration by parts and Sobolev inequalities to
estimate both space and time derivatives. This proves the theorem. For more details,
see Browning & Kreiss (1982).

We now use Assumption 2.2. If M, contains r eigenvalues, then the bounded
derivative principle defines r relations ¢'(w,0) =0, which the initial data must
satisfy. We shall derive these relations in an asymptotic sense. To this end, let Uy(w’)
denote the transformation (2.4) and let A = h(x) be an arbitrary L,-function (with
values in R"),

W) = 3 e fw).

w

Phil. Trans. R. Soc. Lond. A (1994)
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164 H.-O. Kreiss and J. Lorenz
We define the projection operator @ by

’ I O idw, 2z A
—0i= 3 0)(g o) B i)

(3.6)
W= (I—Q)h=h0)+ % Uyw) (O O) Uk (') €< P h(w).
020 0 1
(The decomposition A = k'+ Al constructed here is much easier to determine than -
the decomposition (2.9) because only the matrix Uy(w’) is involved here, in contrast
to the matrix S of the transformation (2.6).) In the expression

I 0

0 0
the unit matrix  has the dimension r x 7, i.e. I has the same dimension as B,. We set
= QL,, L' = (I—Q) L, and obtain the orthogonal decomposition L, = LI @ Ly
On L! the operator P, is elliptic and has a bounded inverse. (Recall the estimate

(2.5).)
Using the projection operator €, we rewrite the system (1.1) in the form

ul = e Py ul + (P, (u, 0/0x) u)' + v(Py(0/0x) u)' + F7, (3.7a)
ult = (Py(u,0/0x) u)X+ v(P,(0/dz) u) + FX, w = u'+u™. (3.7b)
(Here F' = QF, etc.) We will show that if u is slow to order p then ' is determined

by ' up to terms of order O(e?). The first time derivative Ou/0t is bounded
independently of ¢ if and only if Pyu' = O(¢), or, equivalently,

ul = eul, where wu!=0(1). (3.8) .

(For a C«®-function u = u(x,¢) we write w = O(¢) if the L,-norm of each space
derivative of  is O(¢). For projections like Pyu', space derivatives can be defined
using the Fourier expansion; then the O(e)-terminology is used analogously.)
“ondition (3.8) requires that u has, to first approximation, no component in Lj.
Therefore, if  is slow to order p > 1, then to first approximation the solution of (3.7)
is determined by

uI = 0, u%l II a/ax I II+V a/ax II II FII.
Now let us assume (3.8). Differentiation of (3.7) with respect to ¢ yields

I ~1 I
Uy = € 'Pyu't+0(1)
= ¢ 1P, (e7 Py ul + (P (u", 0/0x) u™) 4+ v(P,(0/0x) ™) + F1) + O(1),
uff = O(1).

Therefore, the second time derivative of % is bounded independently of ¢ if and only
if
e Py ult + (P (ult, 0/0z) u™)' + v(Py(0/0x) u™) + F* = O(e).

This equation determines u' by «™ up to terms of order 0(62). This process can be
continued and we can obtain the desired relation between ' and »' to any order
in €.

To summarize, the bounded derivative principle determines for any p > 1 a ‘slow
- manifold’ ., up to terms of order O(e?). Initializing p time derivatives means the

Phil. Trans. R. Soc. Lond. A (1994)
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same as choosing initial data on .Z,. For these initial data, the solution will be slow
to order p in any time interval where we can estimate the solution as in Theorem 3.1.
In this time interval, »'(-, ¢) is determined by w!(-, ¢) except for terms of order O(e?).
In general, the manifolds .4, are not invariant manifolds, however; to construct slow
invariant manifolds (in the sense of dynamical systems) is a much more difficult task.
In the next section we will discuss this question by replacing the partial differential
system by a finite system of ordinary differential equations.

4. Reduction to systems of ordinary differential equations

In §3 we have shown that for smooth data the solution of (1.1) can be expanded
into a rapidly convergent Fourier series

w(x,t) = X eX*?(w,t). (4.1)
weZ®
Since the space derivatives of 4 obey bounds with constants independent of ¢, it is
reasonable to assume that the solution can be well represented by a truncated
Fourier series,

Y el (o, t), (4.2)

lw| < N
where Ne < 1. Also, since we are only interested in real solutions we assume that
W, t) = 4(—w,t).

Introducing (4.2) into (3.7) and neglecting all terms with wave vectors |w| > N, we
obtain a real system of ordinary differential equations

y = Ay+Co,y. ) y+fv.h), v =g@yt), y0)=y, v0)=v. (43)
Here the components of ¥ and v consist of
ul(w, ) +ul(—w,t), i(u(w,t)—u(—o,t)
and 'l (w, ) +u(—w,t), i(uw,t)—u(—o,t)),

respectively. The constant matrix A = —A4* is non-singular and anti-hermitean. The
functions C, f and g are C*-smooth with respect to all variables. We are only
interested in a bounded solution (y,v) of (4.3). Therefore, we can (and will) assume
that the functions C, f and ¢ vanish identically for sufficiently large |y|, |v|. In
applications, one can always establish an a priori energy estimate for (1.1), which
carries over to the truncated system (4.3) and therefore the above assumption is not
restrictive.

All our discussions in §3 carry over to systems of the form (4.3). We refer to Kreiss
& Lorenz (1994). Here we will only discuss the existence of a slow invariant manifold
in the sense of dynamical systems. (Even if the system (4.3) is autonomous, the
constructed manifold will depend on time.)

If f(v,t) = 0 then the existence of a slow invariant manifold is clear. It is defined

by

y=0.
This motivates to construct a substitution
y=®(v,1,6)+§ (4.4)

Phil. Trans. R. Soc. Lond. A (1994)
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such that f(v,t) = 0. Unfortunately, in general, we can determine such a substitution
only in a finite time interval 0 < ¢ < 7. If this is the case, we only obtain the existence
of a local slow manifold. Under rather precise additional assumptions we can prove
the existence for all times.

Introducing (4.4) into (4.3) and observing that

ey, = €, +eP, v, +ed,

=¢fj,+eD,g(v,D+7,t)+eD,,
we obtain for §
ef, = (A+eC(v,§,0) g+ F,

where —F = e(®,+D,g(v, D, t))—(A+eCv,D, 1)) D—f(v, ).
We want to choose @ in such a way that
F=o,

i.e. we want to choose @ as a solution of the system of partial differential equations

D, + D, (v, D, ) = (1A +C(v, D, 1)) D+f(v,1). (4.5)
Note that

M 0
D, g, @, t) =3 gV, &, t)D, P, D, = 3 (4.6)

(Here we denote the components of ¢ by ¢V, ...,¢™. The number M is the number

of slow variables in (4.3), or, equivalently, the number of slow equations.) Thus, (4.5)
is a quasi-linear hyperbolic system for @, and if @ has m components then the
principle part of (4.5) consists of m scalar expressions for the components of @;
coupling occurs through zero-order terms only.

We construct a solution of (4.5) in the following way. Let a(t) be a monotone C'°-
cut-off function with

0 for —1<t<—2
a(t)={ l<t<\ 3
3=

We replace (4.5) by

D+ D, g(v, D, t) = (¢TA+C(v, D, 1)) D+alt) f(v,t), t=—1, (4.7a)
and solve the equation with initial data
D(v, —1) =0. (4.7b)

To reduce the size of the inhomogeneous term in (4.7a), we write
D(v,t) = edy(v, 1)+ Dy (v,8), ¢y =—a(t) A f(v,t).
For &, we obtain a system of the same type
D+ D, g, ehy+ Dy, 1) = (€A +C (v, Dy, 1) Dy +ea(t) fr(v,8),
Di(v, —1)=0,

with a forcing of order O(e). The reduction of the inhomogeneous term can be
continued. One can construct uniformly smooth functions ¢, ¢,,..., with the
following property. If one sets

D =ehyt+€p,+...+elp,  +D, =1, + D,
Phil. Trans. R. Soc. Lond. A (1994)
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then @ solves (4.7) if and only if @, solves the initial value problem

By + Dy g(0, g+ Dy t) = (€A +Cy(0, By, 1) D+ 6%a(t) f (v, 1), | £8)
D, (v, —1) = 0.
Let D, =Y.
For ¥ we obtain
Y.+ X a0, 0)D,¥Y=('A+Bw,eW,t) ¥+b@,t), (4.9)
r=1 .

Py, —1) = 0,
with

a’y(va Y, t) = g(V)(v> wq(v’ t) +Y, t)> B(?), Y, t) = Oq(va Y, t)a b(?), t) = “(t)fq(v> t)'

In (4.9) the nonlinearities are weak for small ¢. Therefore we can use standard
energy estimates to bound all v-derivatives of ¥ independently of 0 < ¢ < ¢, in any
finite time interval —1 <t < 7', provided ¢, = ¢,(7) is sufficiently small. Neither 7'
nor ¢, depend on the order of the v-derivative.

Now we can use as initial data $(0) = 0, or in the original variables

¥(0) = @(v(0),0,¢); (4.10)
then § = 0 for 0 < ¢ < 7, or in the original variables,
y(t) = d(v(t), te), 0<t<T. (4.11)

We express our result in terms of existence of a slow manifold.

Definition 4.2. The system (4.3) has a local slow manifold if for any T > 0 there is
an €y(T) > 0 such that (4.5) has a uniformly smooth solution @ = ®(v,t, €) defined for all
v, 0 <t T, 0 <e<eyT). The system (4.3) has a global slow manifold, if there is an
€, > 0 such that (4.7) has a uniformly smooth solution @ = D(v,t,¢€) defined for all v,

0<t<o0,0<e<eg,
We have shown

Theorem 4.1. The system (4.3) has a local slow manifold.

The manifold exists as long as the solution of (4.7) does not generate any shocks.
Shocks occur if characteristics starting from different points at ¢t = —1 cross each
other. Therefore, the most precise estimates can be obtained by estimating the
solution and its derivatives using the method of characteristics. The characteristics
of (4.7) are defined by

do(t)/dt = g(v, P(v,t),t), v(—1)=w,. (4.12)
Along the characteristics, @ is the solutions of
do/dt = (e 'A+Cv, D, 1)) P+ alt) f(v,8), DP(vy, —1) =0. (4.13)

We know that (4.7) has a solution in some time interval. Therefore, we can think of
g(v, D(v,t),t) =:G(v,t) and C(v, DP(v,t), t) =:C(v,t) as given functions of v,¢.
The Appendix tells us that the convergence or divergence of the characteristics is
governed by the solution operator S, = Sy (¢, t,,v,) of the linearized system (4.12),
dv/dt=g,V.
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168 H.-0. Kreiss and J. Lorenz
Denoting by S, = S(t, ¢, v,) the solution operator of
d®/dt = (€144 C) D,
the Appendix gives us
Theorem 4.2. The first p derivatives of @ with respect to v can be estimated for
0<t< T in terms of
sup{|Sa(t, — L, v IS5t — 1,0/ :0 <t < T, v,e RM} and

: , . (4.14)
sup {f IS5, E, ) 1S, E, v A0 <t ST, wy€ R’M}, i=0,...p.
-1

If these expressions stay uniformly bounded for all T, then there is a global manifold.

In applications, due to scattering, the fast waves die out much more rapidly than
the perturbations in v decay. Therefore, the conditions (4.14) appear to be
reasonable. Also, these conditions are exactly those encountered when studying the
existence of invariant manifold under perturbations (see, for example, Fenichel
1971).

Appendix A. Estimates for solutions of hyperbolic systems with scalar
principle parts

We consider systems of the form

ouw 8 0
—+ X a;(x,t)D;u = B(x,t) u+F(x,t), D, =—,
o T 20D, = &, (A1)
u(z,0) = f(x).
Here we use the notations « = (,, ..., %), u = (u®,...,u™), a = (a,, ...,a,). The a;

are scalars and B is an n X » matrix; all coefficients and data are real, C*-smooth,
and bounded, for simplicity.

We can solve (A 1) by the method of characteristics. The characteristics are the
solutions of the ordinary differential equations

da(t)/dt = a(x(t),t), =(0) = z,. (A 2)
Along every characteristic the solution of (A 1) is determined by
du(x(t), t)/dt = B(x(t), t) u+F(x(),t), u(x(0),0) = f(x(0)). (A 3)

Denoting by Sy(t, £, x,) the solution operator of (A 3) we can write the solution of
(A 3) in the form

t

u((x(t),t) = Sp(t, 0,20) f(,) +f Sp(t, € 2y) F(2(§), ) dE. (A 4)

0

Therefore we obtain
Lemma A 1. Assume that
t
sup|Sy(t, 0, 2,)| < K, Sllpf ISp(t, &, o) dE < Ky (Aba)
¢z, 3, JO

then [ty < Kol floo + K1 oo - (A 5b)
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On the existence of slow manifolds 169

We will now estimate the first derivatives of w. The vector of first derivatives
Du = (Dyu,...,D u) solves

a S
—Du+ Y a;(x,t)D,(Du) = (A, +B,) Du+F,,
ot o ! v ! (A 6)

Here
Dya,) 1 (Dya,) 1 { 0
A4, =— Dyay)1 (Dyag) 1 I= ( )
........................... 0 1
(Dsay) 1 (Dsag)1
B ... 0 D, F+(D,B)u
Bl = .~. A Fl = E .
0 ... B D,F+(D,B)u
We need
Lemma A 2. For any z, t, T, T it holds that
A,(x,t) B,(T,1) = B,(%,1) 4,(,1). (A7)
Furthermore, there exists a permutation matriz P = PT such that
4 . o\ D,a, ... Dja;
—PA1P=( )’ A= Dya, ... D,a, ). (AS)
0 a4l N
Dsal DSaS

Proof. Equation (A 7) follows directly from the definition of 4,, B,. To show (A 8)
we write (A 6) in another order: Setting Du® = (D, u?, ..., D,u®)" and

Du = (Du®@, ..., Du™y,

we rewrite (A 6) in terms of Du to obtain (A 8).
As before, we can solve (A 6) by the method of characteristics. Along the
characteristics Du is the solution of the system

%(Du) = (4,+B,) Du+F,. (A9)

By the preceding lemma, the solution operator of (A 9) can be written in the form

S(t,€) = S4(t,£) Ss(t, §),

where S;, S, are the solution operators of

du 4 ... 0
-1 _ ..
__p ) Pu, (A 10)
0o ... 4
and
B ... 0
du )
T;: ( -" )uz, (A 11)
0O ... B
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170 H.-O. Kreiss and J. Lorenz
respectively. Therefore,
S_.¢,8) ... 0
Sl(t’g)=P ". P> (A 12)
0 e S_ut8)
Syt &) ... 0
Sy(t, ) = ; (A 13)
0 e Sgt,8)

where S, and Sy are the solution operators of
dv/dt = —Av and dw/dt= Buw,
respectively. We have proved

Theorem A 1. If |Sy(t, &, )| and |S_, (¢, &, x,)| ISg(t, &, )| satisfy the estimate (A 5a),
then we have
IDul,, < const. (Df|,, + DF|,, +IFl,,).

We can now repeat the process. We derive an equation for D*u = (D, Du,...,D,Du)’.
By the same argument as before we can write the solution operator of the ordinary
differential equations along the characteristics in the form

S(t’ g) = Sll(t, g) Slz(t> g) S2(t’ g)’

where S;;, S, and S, are of the form (A 12) and (A 13), respectively.
By induction we obtain

Theorem A 2. If |Sy(t, &, x,)| and |S_,(t, &, x)|” |Sg(t, &, x,)| satisfy the estimate
(A ba), then we have

P
|D?u| , < const. (Z (|D’f|w+|DjF|OO)).

=0

We will now derive a geometric interpretation of the estimate for S_,. The
equations for the characteristics are given by

dx(t)/dt = a(x(t),t), x(§) = x,. (A 14)

(For later purposes we choose £ as initial time.) Now consider a perturbation of the
initial data

dy(t)/dt = a(y(t)’ t)’ ?/(g) = x0+87)0'
To first approximation, the difference v(t) = y(t)—x(t) satisfies the linearized
differential equation

Dia, ... D,a,
G A ans D e P (A 15
Dia, ... Da,
LIS ) (y(0) — 2 0)] = ly(E) —=(£).

Thus S731(t, £) measures how much the distance of the characteristics change with
time. If the characteristics converge or diverge with increasing time, then |S;}
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On the existence of slow manifolds 171
becomes larger or smaller with increasing time, respectively. The following lemma,
shows that

IS = 1S_4l- (A 16)

Lemma A 4. Consider the systems
dv/dt = A*v, dw/dt=—Aw.
For the solution operators we have
(S30)* =S_,.
Proof. We approximate the first system by the explicit Euler scheme
v(t+h) = (I +hA*(t)) v(t).
For the discrete solution operator S%. we have
‘ S (8, E) = [+hA*1E—h)) ... [+hA*)),
: (8% (6, £) )% = (T+RA(E—R) ™ . (T+RAE)™
= (I—hA({t—D)+O0(h?)) ... [ —hAE)+ O(h?)).

The limit process A — 0 gives us the desired relation. This proves the lemma.
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